Hot News :
  • A senior member of the New Patriotic Party (NPP), Joe Gharte.. 15
  • The Minister for Finance, Dr Cassiel Ato Forson, has assured.. 25
  • Ghana marched into the quarter-finals of the TotalEnergies C.. 25
  • The United States Government has donated 14 mine-resistant, .. 25
  • The second edition of the Ghana Business League Awards (GBLA.. 146
  • Today marks the 25th anniversary of Otumfuo Osei Tutu II&#39.. 214
Search
Sign In
  • Home
  • News
    • Financial
    • Business
    • Social
    • Extra
    • Politics
    • Health
    • Education
    • Opinion
    • Religion
    • Science
    • Technology
  • Sports
  • Entertainment
    • Music
    • Movie
    • Gossip
  • Institutions
  • Blogs
  • Classifieds
    • Events
    • Auto
    • Real Estate
    • Announcement
  • Lifestyle
    • Gadgets
    • Recipes
    • Fashion
  • Jobs
  • Contact us
Homeblogs
Scroll Down for More
general-articles blogs

Making Gas Out Of Crude Oil

Their discovery could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuab...

sciencedaily sciencedaily By sciencedaily
04 Feb 2008
  • 0
  • 34
  • read
  • blogs, general-articles
Share This
Article:
Font size:
Write a Comment Report
Print
Their discovery could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuable resource. Understanding how crude oil biodegrades into methane, or natural gas, opens the door to being able to recover the clean-burning methane directly from deeply buried, or in situ, oil sands deposits, says Steve Larter, U of C petroleum geologist in the Department of Geoscience who headed the Calgary contingent of the research team. The oil sands industry would no longer have to use costly and polluting thermal, or heat-based, processes (such as injecting steam into reservoirs) to loosen the tar-like bitumen so it flows into wells and can be pumped to the surface. "The main thing is you'd be recovering a much cleaner fuel," says Larter, Canada Research Chair in Petroleum Geology. "Methane is, per energy unit, a much lower carbon dioxide emitter than bitumen. Also, you wouldn't need all the upgrading facilities and piping on the surface." Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly. Some studies have suggested that biodegradation could by caused by aerobic bacteria, which use oxygen. But Larter and colleagues from the U of C, University of Newcastle in the U.K., and Norsk Hydro Oil & Energy in Norway, report in the journal Nature that the dominant process is, in fact, fermentation. It is caused by anaerobic bacteria that live in oil reservoirs and don't use oxygen. "This is the main process that's occurring all over the Earth, in any oil reservoir where you've got biodegradation," Larter says. Using a combination of microbiological studies, laboratory experiments and oilfield case studies, the team demonstrated the anaerobic degradation of hydrocarbons to produce methane. The findings offer the potential of 'feeding' the microbes and rapidly accelerating the breaking down of the oil into methane. "Instead of 10 million years, we want to do it 10 years," Larter says. "We think it's possible. We can do it in the laboratory. The question is: can we do it in a reservoir?" Doing so would revolutionize the heavy oil/oil sands industry, which now manages to recover only about 17 per cent of a resource that consists of six trillion barrels worldwide. Oil sands companies would be able to recover only the clean-burning natural gas, leaving the hard-to-handle bitumen and contaminants deep underground. Understanding biodegradation also provides an immediate tool for predicting where the less-biodegraded oil is located in reservoirs, enabling companies to increase recovery by targeting higher-quality oil. "It gives us a better understanding of why the fluid properties are varying within the reservoir," Larter says. "That will help us with thermal recovery processes such as SAGD (steam-assisted gravity drainage)." The research team also discovered an intermediate step in the biodegradation process. It involves a separate family of microbes that produce carbon dioxide and hydrogen from partly degraded oil, prior to it being turned into methane. This paves the way for using the microbes to capture this CO2 as methane, which could then be recycled as fuel in a closed-loop energy system. This would keep the CO2, a greenhouse gas blamed for global warming and climate change, out of the atmosphere. The petroleum industry already has expressed interest in trying to accelerate biodegradation in a reservoir, Larter says. "It is likely there will be field tests by 2009."
Tags :
Science Technology Business Lifestyle

Source:



Please rate this
Poor Excellent
Votes: 0 |NaN out of 5
How The Tilt Of The Earth Produces The Seasons
Prev article How The Tilt Of The Earth Produces The Seasons
The Work Of A Fuse
Next article The Work Of A Fuse
sciencedaily

..

View Profile
Follow:
Related Posts
general-articles
© Image Copyrights Title

Press Statement from the Secretarial of Progressive Alliance for Ghana PAG on the petitions against the Chief Justice

09 May 2025
general-articles
© Image Copyrights Title

Beware of the ‘humble protégé’ who never disagrees with you

28 Dec 2022
Comments 0
Write a comment
Error!
01. 02. 03. 04.
Reply to Comment
Categories
  • general-articles3
  • business-sense3
  • health3
  • speeches3
  • personalities3
  • jokes-and-humour3
  • politics3
  • religion3
  • culture3
  • features3
  • gadgets3
  • quizes3
  • car3
  • technology3
  • academia3
  • nutrition3
  • war-and-conflict3
  • science3
  • biography3
  • hobbies3
  • Classifieds
  • Jobs
Popular Tags
  • Gadgets
  • Popular
OnePlus Nord N20 5G Android Smartphone

OnePlus Nord N20 5G Android Smartphone

  • 11/29/2022
  • 12
  • 192
  • Votes: 0 |NaN out of 5
Fitbit Charge 5

Fitbit Charge 5

  • 11/25/2022
  • 12
  • 177
  • Votes: 0 |NaN out of 5
Moleskine Smart Writing Set 2.0

Moleskine Smart Writing Set 2.0

  • 11/25/2022
  • 12
  • 176
  • Votes: 0 |NaN out of 5
Dyson’s air-purifying headphones

Dyson’s air-purifying headphones

  • 12/13/2022
  • 12
  • 192
  • Votes: 0 |NaN out of 5
View more articles

Resident Manager

P. O. Box Ah 9182, Ahinsan, Ashanti, Ghana +233 27 872 7027 i-desk@allghanadata.com

Categories
  • news
  • institutions
  • entertainment
  • blogs
  • recipes
  • classifieds
Links
  • Home
  • Privacy
  • Classifieds
  • Lifestyle
  • Jobs
  • Sitemap
  • Contact us
Subscribe

©2002-2025 . All rights reserved.
  • Terms & Conditions
  • Privacy Policy
  • Politics
  • Technology
  • Business
  • Sports
  • Science
Our site uses cookies. Learn more about our use of cookies: Cookie policy
Accept Reject
  • Login
  • Register
Lost Your Password?
or

For faster login or register use your social account.

Connect with Google