Inside your ear is a very thin piece of skin called the eardrum. When your eardrum vibrates, your brain interprets the vibrations as sound -- that's how you hear. Rapid changes in air pressure are the most common thing to vibrate your eardrum.
An object produces sound when it vibrates in air (sound can also travel through liquids and solids, but air is the transmission medium when we listen to speakers). When something vibrates, it moves the air particles around it. Those air particles in turn move the air particles around them, carrying the pulse of the vibration through the air as a traveling disturbance.
To see how this works, let's look at a simple vibrating object -- a bell. When you ring a bell, the metal vibrates -- flexes in and out -- rapidly. When it flexes out on one side, it pushes out on the surrounding air particles on that side. These air particles then collide with the particles in front of them, which collide with the particles in front of them and so on. When the bell flexes away, it pulls in on these surrounding air particles, creating a drop in pressure that pulls in on more surrounding air particles, which creates another drop in pressure that pulls in particles that are even farther out and so on. This decreasing of pressure is called rarefaction.
Inside your ear is a very thin piece of skin called the eardrum. When your eardrum vibrates, your brain interprets the vibrations as sound -- that's how you hear. Rapid changes in air pressure are the most common thing to vibrate your eardrum.
An object produces sound when it vibrates in air (sound can also travel through liquids and solids, but air is the transmission medium when we listen to speakers). When something vibrates, it moves the air particles around it. Those air particles in turn move the air particles around them, carrying the pulse of the vibration through the air as a traveling disturbance.
To see how this works, let's look at a simple vibrating object -- a bell. When you ring a bell, the metal vibrates -- flexes in and out -- rapidly. When it flexes out on one side, it pushes out on the surrounding air particles on that side. These air particles then collide with the particles in front of them, which collide with the particles in front of them and so on. When the bell flexes away, it pulls in on these surrounding air particles, creating a drop in pressure that pulls in on more surrounding air particles, which creates another drop in pressure that pulls in particles that are even farther out and so on. This decreasing of pressure is called rarefaction.
Source:
Please rate this
Poor
Excellent
Votes: 0 |NaN out of 5